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Abstract 

This paper proposes a preliminary design for a space debris removal mission in low Earth orbit that makes use of a 
solar sail as a chaser satellite to reach, capture and de-orbit a debris object. The sail employs solar radiation pressure 
as the main source of thrust, and it is also subjected to the effects of the aerodynamic forces, the oblateness of the 
Earth, as well as the occurrence of eclipses. Locally-optimal laws are used to control the transfer with the aim of 
maximizing (or minimizing) the rate of change of a specific orbital element or a suitable linear combination of them, 
depending on the phase of the transfer. When blended control laws are used to target the debris, optimal weighing 
factors are derived through a genetic algorithm to assess the relative importance of each orbital element. Numerical 
simulations show the effectiveness of locally-optimal laws in driving the sail towards the target even in the presence 
of the aforementioned orbital perturbations. In a test-case scenario, the sail, departing from 600 km of altitude, is able 
to reach the debris’ orbit at 1200 km of height in less than 200 days with good accuracy for a preliminary study. 
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1. Introduction 

The increasing number of space debris objects in low 
Earth orbit poses a threat to operative satellites and 
might soon lead to the overcrowding of this orbital slot 
that would result in a much higher risk of collisions [1]. 
Several strategies to remove these objects have been 
proposed and investigated in the literature, such as pas-
sive de-orbiting that exploits natural perturbations (e.g., 
aerodynamic forces, solar radiation pressure) and drag-
augmentation devices [2, 3, 4, 5, 6, 7, 8]. 

On the other hand, active removal strategies usually 
involve the use of a chaser satellite that can capture the 
debris and de-orbit it. These techniques are needed for 
larger objects, for which a controlled re-entry might be 
necessary, or objects located at higher altitudes where 
natural perturbations have little or no effect [9, 10]. 

Active strategies might also be employed for multiple 
debris removal missions, where a single spacecraft can 
dispose of more debris objects, thus drastically reducing 
the cost of the mission [11, 12, 13]. 

Most of these proposed strategies make use of con-
ventional propulsion systems such as chemical or elec-
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tric thrusters, that would constrain the mission duration 
to the limited amount of propellant that can be carried 
on board. Besides, chemical propellants also represent 
a very high percentage of the spacecraft mass, which 
results in a much higher cost of the launch. 

The use of propellantless propulsion systems, such 
as solar sails, might represent a viable option for space 
debris removal missions around the Earth. Kelly and 
Bevilacqua [14, 15] analyzed minimum-time solar sail 
transfers to remove debris in geostationary orbit where 
the effect of the aerodynamic forces is negligible. 

The aim of this paper is to investigate a single debris 
removal strategy in LEO that makes use of a solar sail 
to reach the debris’ orbit, capture the object, and bring it 
down to a lower altitude where it can re-enter and burn 
into the atmosphere thanks to the aerodynamic forces. 
The advantage of using a solar sail lies in the fact that no 
propellant must be carried on board, which drastically 
reduces the spacecraft mass and the cost of launch. 

In addition to the effect of the solar radiation pres-
sure as the main source of thrust, the dynamical model 
used in this work considers also the natural perturba-
tions present in low Earth orbits, such as the aerody-
namic forces and the gravitational perturbation caused 
by the oblateness of the Earth. The presence of eclipses 
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is also considered assuming that the Earth casts a cylin-
drical shadow. 

The manuscript is organized as follows. Section 2 de-
scribes in detail the dynamical model used in this study, 
the equations of motion to propagate the sail trajectory, 
and all the perturbing accelerations acting on the space-
craft. In Section 3, the transfer model is introduced, and 
each phase is thoroughly described, together with the 
locally-optimal control laws used to optimize the trajec-
tory. The results of the numerical simulations are shown 
and analyzed in Section 4 for each phase of the transfer. 
Finally, Section 5 draws the conclusions of this work 
and lays the foundations for further developments. 

Figure 1: Simple scheme of the mission scenario. The sail departs 
from a circular parking orbit (green) to reach the target’s orbit (red). 
After phasing, rendezvous and capture of the debris, the sail brings it 
down to a lower altitude. 

2. Dynamical model 

The dynamical model used in this work takes into 
account the presence of orbital perturbations such as 
the oblateness of the Earth through the J2 coefficient, 
the atmospheric drag and lift acting upon the sail, as 
well as the solar radiation pressure (SRP) as the main 
source of thrust. To avoid singularities in presence of 
circular orbits, the spacecraft dynamics is described by 
means of a set of modified equinoctial orbital elements 
(MEOEs) [16, 17] 

p = a (1 − e 2) 
f = e cos (Ω + ω) , g = e sin (Ω + ω) 
h = tan (i/2) cos (Ω) , k = tan (i/2) sin (Ω) 
L = Ω + ω + ν 

(1) 

The equations of motion in terms of MEOEs can be 
written in vector form as [18] 

ẋ = A(x) a + b(x) (2) 

where x = [p, f , g, h, k, L]T is the spacecraft state vec-
tor. 

The coefficients of the matrix A ∈ R6×6 are 
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while the remaining ones are all zero. 
The vector b is simply 

b = 

 
0 0 0 0 0 

√ 
µp 

 
q 
p 

2 T 

(4) 

where q = 1 + f cos L + g sin L and s2 = 1 + h2 + k2 . 
The term a is the vector of perturbing accelerations 

expressed in the Radial-Transversal-Normal (RTN) ref-
erence frame TRTN, whose different contributions are 
explained in detail in the following subsections. 

2.1. Solar radiation pressure 

In this study, an ideal force model is used to ex-
press the thrust generated by the solar sail [19], which 
is therefore assumed to be a flat and perfectly reflecting 
surface, able to generate a propulsive acceleration given 
by 

aSRP = η ac cos 2 α n̂ (5) 

where η = {0, 1} is the shadow factor that models the 
occurrence of eclipses, ac is the sail characteristic ac-
celeration, ˆ n is the unit vector perpendicular to the sail 
plane, and α ∈ [0, π/2] is the sail cone angle between ˆ n
and the Sun-sail direction. In this work, the dependence 
of the SRP on the distance from the Sun is neglected due 
to the small eccentricity of Earth’s orbit. In accordance 
with Carzana et al. [20], introduce a sail-centered Sun-
light reference frame TS , whose x̂S axis coincides with 
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the instantaneous Sun-sail vector, ŷS = ẑI × x̂S (where 
ẑI is the third axis of a Geocentric-Equatorial reference 
frame) and ẑS completes the right-handed frame (see 
Fig. 2). The unit vector ˆ n expressed in the Sunlight ref-

Figure 2: Cone (α ∈ [0, π/2]) and clock (δ ∈ [0, 2π]) angles that 
define the orientation of the sail normal unit vector ˆ n with respect to 
the Sunlight reference frame TS . 

erence frame TS is 

[n̂]S = [cos α sin α sin δ sin α cos δ]T (6) 

which must be transformed into the RTN reference 
frame TRTN by means of the transformation matrix 
RS→RTN which depends on the sail state and the Sun’s 
position. 

2.2. Atmospheric drag and lift 

When the sail orbits through the Earth’s atmosphere, 
it experiences aerodynamics forces (drag and lift) that 
can be modelled assuming the sail to be a flat plate. 
Moreover, in agreement with Refs. [20, 21], a hyper-
thermal free-molecular flow is considered, which means 
that the spacecraft velocity is much larger than the ther-
mal velocity of the atmospheric particles [22]. 

Under these assumptions, the drag and lift accelera-
tions can be expressed as 

aD = − 
1 
2 
ρ v2 

σ 
CD v̂ (7) 

aL = 
1 
2 
ρ v2 

σ 
CL L̂ (8) 

where ρ is the atmospheric density provided by the 
MATLAB built-in function atmosnrlmsise00 based on 
the NRLMSISE-00 model [23], v and ˆ v are the sail ve-
locity magnitude and direction, respectively, and σ is 
the sail loading, defined as the ratio of the total mass to 

the sail area. The unit vector ˆ L, which identifies the lift 
orientation, can be computed as [24] 

L̂ = sign 
 
v̂ · n̂ 

 v̂ × 
� 
v̂ × n̂ 

 
∥v̂ × n̂∥ 

(9) 

The drag and lift coefficients CD and CL are defined as 

CD = 2 
 
σT + σNVR |cos ζ | + (2 − σN − σt) cos 2 ζ 

 
|cos ζ | 

(10) 

CL = 2 
 
σN VR + (2 − σN − σT ) cos 2 ζ 

 
|cos ζ | sin ζ 

(11) 

where ζ ∈ [0, π] is the angle between the sail normal 
vector ˆ n and the spacecraft velocity v̂, σN and σT are 
the normal and tangential accommodation coefficients, 
and VR is the ratio of the average particle thermal speed 
to the spacecraft velocity. Typical values for these co-
efficient can be found in the literature [20, 21] to be 
σN = σT = 0.8, VR = 0.05. 

Figure 3: Orientation of drag D and lift L vectors. Also shown is the 
angle ζ between the velocity vector v and the sail unit vector n̂. 

2.3. Earth’s oblateness 

The non-spherical gravitational field of the Earth is 
modelled by means of the J2 harmonic coefficient, and 
the perturbing acceleration in the RTN reference frame 
can be expressed in terms of MEOEs as 

[aJ2 ]R = − 
3 µ J2 R2 

⊕ 

2r4 

 
1 − 

12 (h sin L − k cos L)2 

(1 + h2 + k2)2 

 

[aJ2 ]T = − 
12 µ J2 R2 

⊕ 

r4 

 
(h sin L − k cos L) (h cos L + k sin L) 
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 

[aJ2 ]N = − 
6 µ J2 R2 

⊕ 

r4 

 
(1 − h2 − k2) (h sin L − k cos L) 

(1 + h2 + k2)2 

 
(12) 

where R⊕ = 6378.14 km is the mean equatorial radius 
of the Earth and J2 = 1.082 626 925 639 × 10−3 is the 
Earth’s second harmonic coefficient. 
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2.4. Eclipses 

The occurrence of eclipses is taken into account in 
this paper by means of a cylindrical model (see Fig. 4), 
which only distinguishes between sunlit phases (shadow 
factor η = 1) and shadow (η = 0). At the beginning of 
each propagation arc, the sail and Sun positions with 
respect to the Earth are used to verify whether the sail is 
in eclipse or not by means of the geometrical approach 
described in Ref. [25]. 

r⊙ r r
Figure 4: Cylindrical model used for eclipses. 

3. Transfer Strategy 

This section describes the transfer strategy to reach 
the debris’ orbit starting from a lower altitude parking 
orbit which is assumed to be circular and at the same in-
clination as the one of the target debris. This assumption 
is consistent with a population of debris objects spread 
on circular orbits at a different right ascensions at the 
same inclination. 

Due to the complex dynamics in a highly-perturbed 
environment, locally-optimal control laws have been 
employed to optimize the sail trajectory [26, 27]. The 
aim of these laws is to maximize (or minimize) the rate 
of change of an osculating orbital element as given by 
Gauss’ form of the Lagrange planetary equations [25]. 
When the perturbing accelerations are small enough, 
these laws have been proven to be a good approximation 
to minimum-time transfers, especially in a preliminary 
mission design. Besides, several works have shown the 
possibility of blending these laws in order to control 
more orbital elements at the same time [26, 28]. 

The first part of the mission consists in reaching the 
debris’ orbit starting from a lower altitude parking or-
bit, and it has been divided into two phases as shown 
in Fig. 5. In the 1st leg, the sail is controlled in such a 
way to increase its semimajor axis as quickly as possible 
to get away from the densest layers of the atmosphere. 
This phase ends as soon as the sail’s osculating orbit 
reaches a perigee altitude hP = 1000 km. This threshold 
has been chosen a priori as a height where the atmo-
spheric density becomes almost negligible, but it might 
be possible to optimize it in a future work. 

Debris Orbit

Parking Orbit

Transfer Trajectory
h  = 1000 kmP  1  2

Figure 5: Transfer strategy to reach the debris’ orbit (red) starting 
from a circular parking orbit at a lower altitude (green). The ascending 
part is divided into two phases, which are thoroughly described in 
Subsections 3.1-3.2. 

During the 1st phase, only the semimajor axis is ac-
tively controlled, while the other orbital parameters are 
free, meaning that a 2nd phase is needed in order to drive 
all the four orbital elements of interest (i.e., a, e, i, Ω) to 
match those of the target at the end of the transfer. It 
must be observed that, as we are dealing with transfers 
between circular orbits, the argument of perigee ω is 
meaningless. 

Once the sail has reached the debris’ orbit, it will per-
form phasing maneuvers, rendezvous and capture, be-
fore starting the descent phase at the end of which the 
debris is brought down to a lower altitude and released 
to re-enter into the atmosphere. 

3.1. 1st Phase: semimajor axis increase 

As previously stated, the aim of the 1st phase is to 
increase the semimajor axis of the sail’s orbit as quickly 
as possible. This can be achieved by looking for the 
sail attitude that maximizes the time derivative of the 
semimajor axis at each time instant, that is 

max 
{α, δ} 

da 
dt 

(13) 

where da/dt is given by the corresponding Lagrange’s 
planetary equation 

da 
dt 
= 2 

 
a3 

µ (1 − e2) 

 
e sin ν aR +(1+e cos ν) aT 

 
(14) 

This amounts to maximizing the component of the 
thrust along the velocity vector [21]. 

The transfer has been divided into short-duration arcs 
of a few minutes each. At the beginning of each arc, the 
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Sun and sail positions are computed, as well as the local 
atmospheric density. The optimal sail attitude is then 
derived and maintained constant during the propagation 
along that arc. The simulation is stopped as soon as the 
osculating perigee altitude reaches 1000 km. 

3.2. 2nd Phase: debris targeting 

In this phase, it is necessary to control more orbital 
elements at the same time in order to reach the target’s 
orbit at the end of the transfer. As already mentioned, 
the actual phasing between the sail and the debris is ne-
glected in this work, and thus the true anomaly ν is not 
actively controlled. Besides, as the transfer takes place 
between circular orbits, also the argument of perigee ω 
is meaningless. Of the four remaining parameters, it 
must be observed that three of them (i.e., a, e, i) undergo 
only zero-averaged fluctuations due to the J2 effect. On 
the other hand, the right ascension of the ascending node 
Ω has a well-known secular drift (negative for prograde 
orbits) of up to a few degrees per day, depending on 
the characteristics of the orbit. As the SRP thrust is ex-
tremely small, its effect on Ω is negligible if compared 
to the aforementioned secular drift. For this reason, the 
right ascension is not included in the solar sail’s control 
law, but the need of phasing it with the target sets the 
duration of the transfer. 

To this aim, a simple approach has been used to esti-
mate the flight time of the 2nd phase, based on the con-
straint that, at the end of the transfer, the right ascension 
of the sail Ω must match the one of the target (indicated 
as Ωt from now on). Starting from the sail state at the 
beginning of the 2nd leg {a0, e0, i0, Ω0} (which coincides 
with the state at the end of the 1st phase) and knowing 
the characteristics of the target’s orbit {at, et, it}, an aver-
aged linear drift is assumed for the sail’s right ascension, 
that is 

Ω̇ avg = − 
3 
2

J2 
√ 
µ R2 
⊕ 

a 7/2 
avg (1 − e 2 

avg)2 
cos i avg (15) 

where 

a avg = 
a0 + at 

2 
, e avg = 

e0 + et 

2 
, i avg = 

i0 + it 
2 

(16) 
Given this assumption, the RAAN of the sail and of the 
debris both decrease linearly according to 

Ω(t) = Ω 0 + Ω̇ avg t (17) 

Ω t(t) = Ω t, 0 + Ω̇ t t (18) 

The flight time ∆t is therefore given by the condition 
Ω(∆t) = Ωt(∆t) (see Fig. 6). 

Solar SailDebris
Figure 6: Flight time ∆t of the 2nd phase derived from the RAAN 
matching condition. 

The remaining three orbital elements (i.e., a, e, i) are 
actively controlled by a suitable blending of the corre-
sponding time derivatives which are 

de 
dt 
= 

 
a (1 − e2)
µ 

 
sin ν aR + 

 
cos ν + 

e + cos ν 
1 + e cos ν 

 
aT 

 
(19) 

di 
dt 
= 

 
a (1 − e2) 
µ 

cos (ω + ν) 
1 + e cos ν 

aN (20) 

together with Eq. (14). The objective function J to 
locally-optimize has been written as a linear combina-
tion of these time derivatives, such as 

J = Wa Ra 
d(a/a0) 

dt 
+ We Re 

de 
dt 
+ Wi Ri 

di 
dt 

(21) 

where {Wa, We, Wi} are constant weights that express 
the relative importance of each orbital element, and 
{Ra, Re, Ri} are variable weights that depend on the “dis-
tance” from the target’s orbit [29], that is 

Ra = 
a − at 

|a0 − at | 
, Re = 

e − et 

|e0 − et | 
, Ri = 

i − it 
|i0 − it | 

(22) 

The optimal sail attitude {αopt, δopt} is computed as the 
one that minimizes the objective function J at each time. 
The role of these weights is to adjust the relative im-
portance of each orbital element as the sail approaches 
the target and prioritize the one that is furthest from 
the target. As a matter of fact, these weights tend to 
zero as the corresponding element tends to the target 
value. Moreover, the numerators provide the sign of the 
weight, which indicates whether the corresponding time 
derivative has to be maximized or minimized. 

The constant weights can be chosen in the range [0, 1] 
without loss of generality, and must be selected in such 
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a way that the sail reaches the target after a flight time 
set by the RAAN matching condition. To do so, a ge-
netic algorithm has been set up with the objective of 
minimizing the function 

F = 

 
a fin − at 

a0 

2 

+ 
� 
e fin −et 

2 
+ 
� 
i fin − it 

2 
+ 
� 
Ωfin −Ωt, fin 

2 

(23) 
As the time to simulate a single transfer was long and 

computationally expensive, an approximate model has 
to be employed to run the genetic algorithm. As shown 
in Fig. 7, the first step in the approximate model con-
sists in computing the keplerian orbital period T1 at the 
current semimajor axis a1 according to Kepler’s third 
law. The local optimization and propagation is then car-
ried out for a time equal to the orbital period and the 
difference ∆oe1 between the final and the initial orbital 
elements is evaluated. At this point, the model assumes 
a linear evolution of all the orbital elements for a time 
interval equal to N times the orbital period T1. After 
the time NT1, the value of each orbital element is sim-
ply computed as oe(NT1) = oe(0) + N ∆oe1. The same 
procedure is repeated M times, where M is given by the 
total flight time derived by the RAAN matching con-
dition described in Subsec. 3.2. On the other hand, the 
value of N is a trade-off choice between a more accurate 
approximation (smaller N) and a shorter computational 
time (greater N). In the numerical simulations described 
in Subsec. 4.2, a value N = 30 is used. 

Time 

oe 

N times 
N times Update orbital  period 

N T 1 

“Exact”  optimization 

T1 

Δoe1 

Δoe2 

Figure 7: Approximate model for the 2nd phase transfer used to reduce 
the computational time of the genetic algorithm. 

3.3. Descent Phase 

After capturing the debris, the sail has to bring it 
down to a lower altitude and release it. In this descent 
phase, the sail departs from the debris’ orbit and targets 

the initial circular parking orbit at a lower altitude, but at 
the same inclination. Obviously, no RAAN matching is 
needed in this phase and the flight time is left free. The 
only parameters of interest to be actively controlled are 
the semimajor axis a, the eccentricity e and the inclina-
tion i. It must be pointed out that the additional mass of 
the captured debris has to be considered, resulting in a 
higher sail loading σ desc > σ and a lower characteristic 
acceleration ac, desc < ac. 

A blended control law similar to the one in Eq. (21) 
has been used, that is 

J = Ra 
d(a/a0) 

dt 
+ Re 

de 
dt 
+ Ri 

di 
dt 

(24) 

where the variable weights are now defined as 

Ra = 
a − at 

|a0 − at | 
, Re = e − et, Ri = i − it (25) 

since the initial and final orbits have now the same ec-
centricity and inclination, and therefore some denomi-
nators in Eq. (22) would be equal to zero. As the flight 
time is not constrained, there is no need to include and 
optimize the constant weights, but the trajectory is prop-
agated until the sail reaches the disposal orbit within a 
certain tolerance. 

4. Numerical Simulations 

In this Section, the transfer strategy described in 
Sec. 3 is applied to a test-case scenario using a solar 
sail with characteristic acceleration ac = 0.1 mm/s2 , 
that departs from a circular parking orbit at an altitude 
h0 = 600 km above the Earth and initial right ascension 
Ω0 = 0 deg. The departure date is the 1st January 2030, 
when the solar activity is close to a minimum. 

4.1. 1st Phase: numerical results 

The results obtained for the 1st phase of the transfer 
are shown in Fig. 8. In this case, the sail has reached 
the threshold perigee altitude hP = 1000 km after about 
92 days, showing an increase in the semimajor axis of 
roughly 450 km, which is compatible with similar anal-
yses carried out in the literature [20]. The three orbital 
elements {a, e, i} clearly show the fluctuations due to the 
J2 effect, which is also responsible for the evident secu-
lar drift in the right ascension Ω. 

4.2. 2nd Phase: numerical results 

The 2nd phase of the transfer consists in targeting the 
debris’ orbit using the blended control law defined in 
Eq. (21). As explained in Subsec. 3.2, the flight time 
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Figure 8: Evolution of the four orbital elements of interest {a, e, i, Ω} 
during the 1st phase of the transfer for a solar sail with characteristic 
acceleration ac = 0.1 mm/s2 . 

is fixed and provided by the RAAN matching condi-
tion. As a test-case scenario, an initial RAAN differ-
ence ∆Ω0 = 10 deg between the sail and the debris has 
been assumed, which lead to a flight time of approx-
imately 101.9 days. It is worth pointing out that, if 
the initial RAAN difference is too small, the flight time 
would be shorter as well, and it might be impossible to 
drive some orbital elements towards the target in such a 
short time. On the other hand, longer flight times dras-
tically increase the computational time for the genetic 
algorithm. 

Given the flight time, a genetic algorithm is run with 
the approximate model to find the optimal values of the 
constant weights {Wa, We, Wi}. These values have been 
then used to propagate the trajectory both with the ap-
proximate and with the “exact” model. 

The settings of the genetic algorithm and the optimal 
weights are shown in Tab. 1. Despite the low number of 
generations used in this simulation, the results plotted in 
Fig. 9 show that all the orbital elements are effectively 
driven towards their target values. 

Table 2 shows the final values of the sail orbital ele-
ments obtained with both the approximate and the ”ex-
act” model. The final error in the semimajor axis ob-
tained with the more accurate propagation is less than 
4 km, the final eccentricity is about 1.7 × 10−3 , and the 
inclination seems to match very well the target value. 
These results are considered to be acceptable in a pre-
liminary study, and are expected to improve if the ge-
netic algorithm has time to better explore the solution 
space. 

A comment is needed on the final right ascension, 
which, despite being very close to the target according 
to the approximate model, it actually shows a 2.84 deg 
discrepancy when the ”exact” model is used. This er-
ror is due to the fact that it is sometimes difficult to 
precisely match the desired flight time with the approx-
imate model, as the shortest time interval is made of 
N = 30 cycles which correspond to more than 2 days. 
This time step is then multiplied for an integer num-
ber M, which might lead to a little discrepancy between 
the flight time imposed by the RAAN matching condi-
tion (and used to propagate the exact model) and the one 
used in the approximate model. Despite this difference 
being relatively small, the right ascension has a drift of 
about 3 deg per day on that orbit, thus leading to the ob-
served error in the final value. A possible solution to 
this issue might be to reduce the number of cycles N, 
but this would also lead to a much longer computational 
time. 

Table 1: Genetic algorithm settings, flight time and optimal weights 
for the 2nd phase of the transfer. 

Population Size 50 

Elite Count 2 

Generations 10 

Function Tol 1 × 10−6 

Flight Time ∆t 101.9 days 

Wa 0.27849822 

We 0.83082863 

Wi 0.76324954 

Table 2: Numerical results of the 2nd phase. Both the approximate and 
the “exact” models are propagated using the weights obtained from 
the genetic algorithm. 

Orbit a [km] e i [deg] Ω [deg] 

Sail initial 7433.5 0.0074 59.87 56.98 

Debris initial 
7578.1 0 60 

46.98 

Debris final 130.07 

Sail (approx.) 7588.7 0.0009 59.99 130.05 

Sail (“exact”) 7574.4 0.0017 60 127.23 
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Figure 9: Evolution of the orbital elements in the 2nd phase of the 
transfer. 

4.3. Descent: numerical results 

The last phase of the mission is the descent to bring 
the debris down to the initial sail parking orbit and re-
lease it where the aerodynamic forces can lead to its 
atmospheric re-entry. The additional mass of the de-
bris is taken into account by doubling the sail loading 
σdesc = 2σ, which means that the new characteristic ac-
celeration of the sail is ac, desc = ac/2 = 0.05 mm/s2 . 
The simulation is started roughly 45 days after the end 
of the 2nd phase, to allow for phasing maneuvers, ren-
dezvous and capture. The simulation has been propa-
gated for 400 days, and the minimum value of the func-
tion D = ((a −at)/a0)2 + (e −et)2 + (i − it)2 has been used 
as a stopping criterion to generate the plots in Fig. 10. 
With this approach, the descent phase lasts about 384 
days, but it must be observed that both the semimajor 
axis and the inclination have reached the target values 
after around 300 days. The residual small eccentricity 
after that time might be negligible if no particularly ac-
curate orbit is required for the debris disposal. 

A possible improvement to this approach would be 
to include some constant weights in the blended control 
law in Eq. (24), and look for the values of these fac-
tors that drive the sail towards the disposal orbit in the 
minimum time. 

5. Conclusion 

This work has investigated a space debris removal 
strategy that uses a solar sail to actively dispose of a de-
bris object in low Earth orbit. Locally-optimal control 

Figure 10: Evolution of the three orbital elements {a, e, i} (blue) during 
the descent phase after capturing the debris. The red lines indicate the 
orbital elements of the target orbit, which coincides with the initial 
parking orbit. 

laws have been employed to optimize the sail trajectory, 
and have proved to be particularly suited and effective 
in driving the spacecraft towards its target in a highly-
perturbed environment where global-optimization tech-
niques would have been challenging to implement. 

A blending strategy has been used to control a set of 
orbital elements at the same time in order to reach the 
debris’ orbit. Despite the fact that the search for optimal 
weighing factors has required a considerable amount of 
time, even a low number of generations in the genetic 
algorithm has provided good solutions for a preliminary 
design. Besides, the proposed approximate model has 
not only reduced the computational time, but also pro-
vided a good approximation to the more accurate ap-
proach. 

A future work could include the switching point be-
tween 1st and 2nd phases into the optimization process 
in order to derive the best possible sequence depending 
on the characteristics of the debris’ orbit. 

An interesting application of this method could be 
a multiple debris removal mission, where a single sail 
can sequentially capture and de-orbit many objects, thus 
making the use of this propulsion system even more at-
tractive. 
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